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101.29 Sums of square roots

Introduction
Sums of consecutive integral roots have been studied by many

mathematicians, for instance, the following identities are known. 
(1) ⎣ n + n + 1⎦ = ⎣ 4n + 1⎦
(2) ⎣ n + n + 1 + n + 2⎦ = ⎣ 9n + 8⎦
(3) ⎣ n + n + 1 + n + 2 + n + 3⎦ = ⎣ 16n + 20⎦
(4) ⎣ n + n + 1 + n + 2 + n + 3 + n + 4⎦ = ⎣ 25n + 49⎦
where  denotes the greatest integer not exceeding . ⎣x⎦ x

The formula (1) is folklore; (2) was posed by F. D. Hammer as Problem
E3010 in The American Mathematical Monthly, see three different methods
in [1]; (3) was published by Z. Wang in [2]; and (4) was proved by X. Zhan
in [3].

In 2008, P. W. Saltzman and P. Yuan, see [4, Lemma 2.2], showed that

if  for any integer , thenn >
k2 (k − 1) (2k − 1)

24
k ≥ 2

⎣ n + n + 1 + n + 2 +  …  + n + k − 1⎦ = ⎢⎢⎣ k2n +
(k − 1)k2

2
− 1⎥⎥⎦. (1)

In this Note, we present a simple alternative proof of (1) and extend this
result to sums of square roots of  sequences of non-negative real numbers.

Main Results
Throughout this section, let  be a fixed positive integer. We first

derive a lemma which is the core of our main result.
k ≥ 2

Lemma 1:  Let  be non-negative real numbers which are not all
equal. Let . Then the following statements hold:

a1, a2, … , ak
A = 1

2 min
i ≠ j

{ai + aj}

(i)  for all

positive integers ,

n + a1 + n + a2 +  …  + n + ak < k2n + k ∑
k

i = 1

ai

n

(ii)  for

all positive integers .

n + a1 + n + a2 +  …  + n + ak > k2n + k ∑
k

i = 1

ai − 1

n ≥
1
4 ∑

k

i = 1
∑

k

j = 1
(ai − aj)2 − A

Proof:  Observe that 

(∑k

i = 1

n + ai)2

= ∑
k

i = 1
∑

k

j = 1
(n + ai) (n + aj).
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(i)  By the Arithmetic Mean−Geometric Mean inequality [5, Chapter 2]

xy ≤
x + y

2
(where the equality holds if, and only if, ), with  and

, we have
x = y x = n + ai

y = n + aj

∑
k

i = 1
∑

k

j = 1
(n + ai) (n + aj) < ∑

k

i = 1
∑

k

j = 1
(n +

ai + aj

2 )
= k2n + k ∑

k

i = 1

ai.

Thus,

∑
k

i = 1

n + ai < k2n + k ∑
k

i = 1

ai.

(ii)  By the Geometric Mean-Harmonic Mean inequality [5, Chapter 2]

xy ≥
xy

1
2 (x + y)

(where the equality holds if, and only if, ), with  and
, we have

x = y x = n + ai
y = n + aj

∑
k

i = 1
∑

k

j = 1
(n + ai) (n + aj) > ∑

k

i = 1
∑

k

j = 1

(n + ai) (n + aj)
n + 1

2 (ai + aj)

= ∑
k

i =1
∑

k

j = 1

(n + 1
2 (ai + aj))2 − (1

2 (ai + aj))2 + aiaj

n + 1
2 (ai + aj)

= ∑
k

i =1
∑

k

j = 1
(n +

ai + aj

2
−

(ai − aj)2

4n + 2(ai + aj))
= k2n + k ∑

k

i =1

ai − ∑
k

i =1
∑

k

j = 1

(ai − aj)2

4n + 2(ai + aj).

Thus,

∑
k

i = 1

n + ai > k2n + k ∑
k

i = 1

ai − ∑
k

i = 1
∑

k

j = 1

(ai − aj)2

4n + 2 (ai + aj).

Now, assume that .  We getn ≥
1
4 ∑

k

i = 1
∑

k

j = 1
(ai − aj)2 − A

1 ≥ ∑
k

i = 1
∑

k

j = 1

(ai − aj)2

4n + 4A
> ∑

k

i = 1
∑

k

j = 1

(ai − aj)2

4n + 2 (ai + aj).
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Therefore,

∑
k

i = 1

n + ai > k2n + k ∑
k

i = 1

ai − 1

for .n ≥
1
4 ∑

k

i = 1
∑

k

j = 1
(ai − aj)2 − A

As a consequence of Lemma 1, we obtain the following result.

Theorem 1:  Let  be non-negative real numbers which are not

all equal and  a positive integer. Let . Then for

all positive integers ,

a1, a2, … , ak

k ∑
k

i = 1
ai A = 1

2 min
i ≠ j

{ai + aj}

n ≥
1
4 ∑

k

i = 1
∑

k

j = 1
(ai − aj)2 − A

⎣ n + a1 + n + a2 +  …  + n + ak⎦ =
⎢
⎢⎢
⎣

k2n + k ∑
k

i =1

ai − 1
⎥
⎥⎥
⎦
. (2)

Proof:  Let  and .

Suppose that equation (2) does not hold.  By Lemma 1(ii), there is a positive
integer  such that

P = k2n + k ∑
k

i = 1
ai n ≥ 1

4 ∑
k

i = 1
∑
k

j = 1
(ai − aj)2 − A

t

P − 1 < t ≤ n + a1 + n + a2 +  …  + n + ak.
By Lemma 1(i), we obtain

P − 1 < t < P.
Equivalently,

P − 1 < t2 < P,
contradicting the fact that there is no integer between two consecutive
integers.

Corollary 1:  Let  be a rational number with  an integer. Then for all

positive integers ,

m mk

n ≥
m2k2 (k2 − 1) − 12m

24

⎣ n + n + m + n + 2m +  …  + n + (k − 1)m⎦ =
⎢
⎢
⎣

k2n +
mk2(k2 − 1)

2
− 1

⎥
⎥
⎦
.

Proof:  Put  in Theorem 1, we get that

is a positive integer and .  Moreover,

ai = m (i − 1) k ∑
k

i =1

ai =
mk2(k − 1)

2
A = 1

2m
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∑
k

i = 1
∑

n

j = 1
(ai − aj)2 = m2 ∑

k − 1

i = 0
∑

m − 1

j = 0

(i − j)2

= 2m2k ∑
k − 1

i = 0

i2 − 2m2 ( ∑
m − 1

i = 0

i)
=

m2k2 (k − 1) (2k − 1)
3

−
m2k2 (k − 1)2

2

=
m2k2 (k − 1)2

6
.

Hence, we obtain the desired result.
 

Note:  Substituting  in Corollary 1, we obtain that identity (1) holds

for . One can see that our lower bound on  is

approximately half of the one obtained in [4].

m = 1

n ≥
k2 (k2 − 1) − 12

24
n

Putting ,  in Corollary 1, we respectively get parts (i), (ii)  as
shown in the following example.

m = 2 1
k

Example 1:  Let  be a positive integer.n

(i) If , then n ≥
k2 (k2 − 1)

6
− 1

⎣ n + n + 2 + n + 4 +  …  + n + 2(k − 1)⎦ = ⎣ k2(n + k − 1) − 1⎦.

(ii) If , then n ≥
k3 − k − 12

24k
⎢
⎢⎣ n + n +

1
k

+ n +
2
k

+  …  + n +
k − 1

k
⎥
⎥⎦ =

⎢
⎢⎣ k2n +

k (k − 1)
2

− 1
⎥
⎥⎦.

Let  and  be the sequences of the Fibonacci and Lucas
numbers, respectively, which are given by

{Fn}n ≥ 0 {Ln}n ≥ 0

F0 = 0,  F1 = 1 and  Fn + 1 = Fn + Fn − 1,

L0 = 2,  L1 = 1 and  Ln + 1 = Ln + Ln − 1.
In Theorem 1, let  and  be the  Fibonacci number and the

Lucas number, respectively. We get the following example.
k = 2 ai i th i th

Example 2:  Let  and  be positive integers. Thenn i

⎣ n + Fi + n + Fi +1⎦ = ⎣ 4n + 2Fi +2 − 1⎦ if  n ≥ 1
2 (F2

i −1 − Fi +2),
and

⎣ n + Li + n + Li +1⎦ = ⎣ 4n + 2Li +2 − 1⎦ if  n ≥ 1
2 (L2

i −1 − Li +2).

Putting  and  for  in Theorem 1 anda1 = 0 ai =
1

i (i − 1)
2 ≤ i ≤ k
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manually checking the first few values of , we get the following example.n

Example 3:  Let  and  be positive integers. Then for n k 2 ≤ k ≤ 10

⎢
⎢
⎣

n + n +
1

1 × 2
+ n +

1
2 × 3

+  …  + n +
1

(k − 1)k
⎥
⎥
⎦

= ⎣ k2n + k − 2⎦.
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101.30 A few remarks concerning a class of infinite sums

This Note derives a general expression for the infinite sums of fractions
having numerator 1 and denominators that are the product of a sequence of
numbers.  The sequences are all arithmetic progressions having a common
difference , with a starting value  and the number of terms .  By entering
values for  and  and forming the definite integral for the interval 0 to 1
of the Abel power series in  the sum is returned.

d q p
d, q p

x

Part  1:  In which sequences of numbers with unit differences starting with 1
are used as denominators.

Consider the infinite summation of a series of terms such as the example

, where the denominators form an

unbroken sequence. 

1
1 × 2 × 3 × 4

+
1

5 × 6 × 7 × 8
+  …
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